嘉峪检测网 2025-08-18 18:58
导读:本期将聚焦人工智能医疗器械产业化过程中的硬件支撑体系,重点解析企业在产品研发、测试等环节必备的关键设备配置方案。
在此前的分享中,我们系统探讨了人工智能医疗器械从需求分析、数据收集到部署运行的设计开发体系(详见《人工智能医疗器械设计开发全攻略》)。作为该系列的延续,本期将聚焦人工智能医疗器械产业化过程中的硬件支撑体系,重点解析企业在产品研发、测试等环节必备的关键设备配置方案。
具体来说,生产企业应结合自身产品的实际情况,在产品生存周期过程提供充分、适宜、有效的软硬件设备、开发测试工具、网络资源以及病毒防护、数据备份与恢复等保障措施。
01数据集构建所用设备
1. 数据采集设备管理应明确兼容性和采集特征等要求,设备的兼容性记录应包括采集设备的名称、规格型号、制造商、性能指标,若无需考虑兼容性要求应详述理由并予以记录。采集特征需明确采集设备的采集方式(如常规成像、增强成像)、采集协议(如MRI成像序列)、采集参数(如CT加载电压、加载电流、加载时间、层厚)、采集精度(如分辨率、采样率)。数据采集若使用历史数据,需列明采集设备及采集特征要求,并开展数据采集质量评估工作。
2. 企业应配备执行数据集相关任务需要的资源,如访问、读取数据、预览、检索等任务需要的软件、硬件、网络配置。测试集应配备封闭管理需要的软件、硬件、网络配置,明确管理要求。
3. 数据标注应明确标注软件(包含自动标注软件)的要求,明确标注软件的名称、规格型号、完整版本、制造商、运行环境、软件确认等要求并予以记录。
4. 若需使用特定的外部设备获取附加的信息(如病理结果、检验结果、数据模态转化、多模态配准、体积测量、三维打印等),设备的规格型号、计量信息(如需计量)等应确认要求并予以记录。
5. 数据整理所用软件工具(含脚本)均需明确名称、规格型号、完整版本、制造商、运行环境,并进行软件确认。
02算法研发所用设备
1. 应明确定义并记录进行算法训练、算法测试、算法部署所用到服务器算力的典型配置(如GPU型号和数量、CPU型号和数量、内存大小、网络带宽等)。
2. 应明确定义并记录算法训练所用的操作系统、开发环境(如编程语言及版本、集成开发环境及版本、web服务及版本、支持软件及版本等)、算法架构(如基础计算包、GPU指令集、集成开发环境插件等)。
3. 应明确定义并记录算法测试所用的操作系统、开发环境、算法框架、基础服务等,若与其他外部设备进行配合或作为软件组件集成到其他医疗器械中,明确说明外部设备和器械的规格型号。
4. 应明确定义并记录算法部署运行的操作系统、开发环境、算法框架、基础服务、虚拟机、应用容器引擎等。
来源:Internet